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Abstract

Burden of Disease studies—such as the Global Burden of Disease (GBD) Study—quantify

health loss in disability-adjusted life-years. However, these studies stop short of quantify-

ing the future impact of interventions that shift risk factor distributions, allowing for

trends and time lags. This methodology paper explains how proportional multistate lifet-

able (PMSLT) modelling quantifies intervention impacts, using comparisons between

three tobacco control case studies [eradication of tobacco, tobacco-free generation i.e.

the age at which tobacco can be legally purchased is lifted by 1 year of age for each cal-

endar year) and tobacco tax]. We also illustrate the importance of epidemiological speci-

fication of business-as-usual in the comparator arm that the intervention acts on, by

demonstrating variations in simulated health gains when incorrectly: (i) assuming no de-

creasing trend in tobacco prevalence; and (ii) not including time lags from quitting to-

bacco to changing disease incidence. In conjunction with increasing availability of base-

line and forecast demographic and epidemiological data, PMSLT modelling is well suited

to future multiple country comparisons to better inform national, regional and global

prioritization of preventive interventions. To facilitate use of PMSLT, we introduce a

Python-based modelling framework and associated tools that facilitate the construction,

calibration and analysis of PMSLT models.
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Introduction

If epidemiology is to inform prevention policy, then it must

quantify the health impacts of interventions. Relative risks

for exposure-outcome associations alone will not suffice—

information is also needed on the number of people af-

fected and the future impacts of interventions on morbidity

and mortality. Health economics—through the well-

established sub-discipline of cost-effectiveness analysis1,2—

combines information on quality-adjusted life-years

(QALYs) gained or disability-adjusted life-years (DALYs)

averted, together with incremental health costs, to produce

estimates of the cost-effectiveness of interventions.

In epidemiology, emerging from the potential outcome

approach and G methods,3,4 there has been an increasing

interest in using G computation to quantify intervention

impacts.5–7 Here one uses existing (and therefore histori-

cal) data, estimates each individual’s potential outcomes

under counterfactual exposure or covariate assignment

and quantifies the impact of an intervention. For example,

Garcia-Aymerich et al. estimated that the risk of asthma

among nurses would decrease from 1.5% to 1.3% if: those

with a body mass index (BMI) >23 decreased their weight

by 5%; and moderate to vigorous physical activity was

lifted to at least 3.5 h per week for all nurses—over the 10-

year period 1988 to 1998. But this is not prospective; what

we might really want to estimate is the future risk of

asthma under intervention scenarios, allowing for pro-

jected future trends in risk factors and disease rates. This

future-orientated estimation requires simulation models.

From another perspective, burden of disease studies8,9

and the Global Burden of Disease (GBD) Study10 take two

steps along the path to comparably and systematically

informing decisions about which preventive interventions

are best. First, they quantify the gap between a current

population’s health and an external ideal in DALYs.

Second, they use comparative risk assessment to determine

how much of this current burden is due to non-ideal past

risk factor distributions (e.g. GBD 2016 Risk Factors

Collaboration11) However, it is less common for this work

to progress to comparably estimating the future avoidable

health (and cost) impacts of actual interventions, allowing

for factors such as intervention coverage, uptake and ad-

herence, and time lags from intervention to changing dis-

ease. Murray et al. outline a theoretical framework from

attributable to avoidable measures of impact; for policy

making, the avoidable impact is more important.12

One notable example of modelling future avoidable

impacts from actual interventions is the Assessing Cost

Effectiveness of Prevention (ACE-Prevention) body of

work in Australia. It has used national burden of disease

outputs as starting points to parameterize proportional

multistate lifetable (PMSLT) simulation models of public

health interventions applied to the Australian 2003 popu-

lation, to estimate DALYs averted over the remainder of

their lifetime.13 A subsequent body of New Zealand work

extended the same approach (e.g. for tobacco

interventions14,15).

The same PMSLT approach has also been picked up in

other countries (e.g. the UK,16,17 Vietnam18 and

Tanzania19). The Netherlands has led the development of

health impact assessment methods using simulation

modelling, including the DYNAMO model that uses

Markov modelling to quantify preventive intervention

impacts on population health metrics such as (disability-

free) life expectancy, prevalence and mortality rates.20–22

The World Health Organization’s CHOICE initia-

tive,23,24 previously very active in this area including de-

veloping epidemiological models,25 is updating a range of

tools and costing databases that provide standardized

methods for conducting country-based and regional cost

effectiveness analyses of a range of health interven-

tions,26,27 such as those carried out to inform decision

making regarding intervention strategies against non-

communicable diseases in Mexico.28

Key Messages

• A key role of epidemiology is to inform prevention policy, which requires comparable quantification of health impacts of

interventions.

• The prospective or future-orientated quantification of intervention impacts, using simulation modelling, is seldom un-

dertaken by epidemiologists.

• Proportional multistate lifetable simulation modelling is one type of macro-simulation available to epidemiologists to es-

timate the health (and cost) impacts of preventive interventions.

• Proportional multistate lifetable modeling uses disease incidence and case fatality rates, all-cause mortality and morbid-

ity rates, intervention effects sizes, risk factor distributions and potential impact fractions—concepts familiar to

epidemiologists.
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High-level overviews of the modelling approaches used

in these bodies of work, including adaptations of a com-

parative risk assessment approach, Markov modelling, dis-

crete event simulation and multistate lifetable models, can

be found elsewhere.17,29–37 The focus of this paper is on

the PMSLT method for estimating preventive intervention

impacts on life-years (LYs) and health-adjusted life-years

gained (HALYs, a term we define to encompass both

DALYs averted and QALYs gained), and life expectancy

and health-adjusted life expectancy (HALE) gained.

Barendregt et al. first described the PMSLT as a means

to overcome a restriction in standard Markov and

(non-proportional) multistate lifetables, namely state ex-

plosion.31 This restriction means that for a model with—

say—five diseases, there are 32 possible combinations of

disease states (one healthy, five single disease, 10 combina-

tions each of two or three diseases, five combinations of

four diseases, and one with all five diseases; i.e.
P5

r¼0
5!

r! 5�rð Þ!
where r ¼ number of diseases). This state explosion results

in large model structures, with consequent computational

and parameterization costs. The PMSLT rests on the as-

sumption of disease independence. It models proportions

of a cohort in each disease state, where proportions of the

cohort also reside simultaneously in multiple states given

the prevalence probabilities. For example, if disease A has

a prevalence of 10%, and disease B a prevalence of 5%,

these two diseases are modelled in parallel lifetables as

these proportions of the cohort—implicitly assuming that

10% � 5% ¼ 0.5% of the cohort had both diseases to-

gether. Within the lifetables, Markov model assumptions

apply.30,38

Lifetables and Markov models are commonly used in

epidemiology and health economics, yet not commonly

taught in epidemiological courses. The purpose of this pa-

per is to provide an overview of PMSLT models for epi-

demiologists. Wider adoption of modelling approaches

such as PMSLT could assist epidemiologists better inform

prioritization of population interventions for decision

makers.

This paper has four objectives:

i. to describe the concept and methodology of lifetable

and PMSLT simulation;

ii. to demonstrate the capabilities of a PMSLT using a

comparison of three tobacco control interventions in a

single high-income country (New Zealand) as a case

study;

iii. to demonstrate how specification of the PMSLT model

changes the magnitude of estimates on a spectrum be-

tween attributable and avoidable impacts;

iv. to introduce a publicly available framework for build-

ing and analysing PMSLT models in Python code.

Basic concept and lifetable method

We step through two basic examples:

i. a lifetable for one cohort (50–54-year-old New

Zealand non-M�aori males alive in 2011), under both

business-as-usual (BAU) and a simple intervention of a

5% lowering of the all-cause mortality rate at every

year of age into the future;

ii. the addition of a single coronary heart disease lifetable,

in addition to the ‘main’ lifetable, under both BAU and

an intervention scenario of a 5% lowering of the coro-

nary heart disease incidence rate at every year of age

into the future, and how that is then collated back to

changes in the main lifetable.

Example 1: one main lifetable

Lifetables usually refer to ‘period’ lifetables that are com-

monly provided by government statistical agencies to pro-

duce estimates of metrics such as life expectancy. These

period lifetables assume that a hypothetical group of indi-

viduals are exposed, over their hypothetical life course, to

those mortality rates seen in 1 calendar year, i.e. that a 52-

year-old experiences the actual observed mortality rate of a

current 52-year-old this year, the observed mortality rate

of a current 53-year-old next year and so on. In simulation

modelling, we take a cohort perspective, using projected

future mortality rates.

Table 1 shows excerpts of a cohort lifetable for 50–54-

year-old New Zealand non-M�aori males alive in 2011; we

do not show all ages into the future, but just the first and

last two annual steps (any survivors at age 110 are set to

have a mortality risk of 1). Under BAU, the mortality rates,

mx, increase with age. The mortality rates are converted to

mortality risks (qx), then multiplied into the starting popu-

lation in base-year and surviving population each year

thereafter (lx) to calculate deaths each year (dx). The num-

ber of person-life-years lived to halfway through each an-

nual time step (Lx) is assumed as the average of lx in the

current and future time step. The life expectancy (ex) is

given by the sum of all future time step Lx’s (4 301 727 in

Table 1), divided by the starting population size

(129 850)—in this example, 33.13 years of expected

remaining life from the age of 52 in 2011.

To add morbidity to the BAU, we use ‘prevalent years

of life lived with disability’ (pYLD). The numerator for the

pYLD is the total number of YLDs for the same demo-

graphic by age group from a local/national burden of dis-

ease study or (say) from the GBD estimates for each

country, and the denominator is the estimated number of

people in that population. Due to increasing morbidity

with age, the pYLD goes up with age—in this example
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from 0.1122 at age 52 to 0.3578 at age 110 years. One mi-

nus the pYLD at each age is then multiplied by the life-

years, giving HALYs and health-adjusted life expectancy

(HALE; 26.00 for 52-year olds, or 78.5% of the life

expectancy).

The second panel illustrates the simplistic intervention

of a 5% reduction in mortality rate at every year of age.

The life-years and HALYs lived over the remainder of this

cohort’s lifespan increase by 58 512 (1.36%) and 40 059

(1.19%), respectively, compared with BAU—less than the

5% reduction in mortality rate due to the exponentially in-

creasing mortality rates with age that mathematically limit

survivorship. The life expectancy and HALE increase by

0.45 and 0.31 years, respectively.

Example 2: a main lifetable and one subsidiary

coronary heart disease lifetable

Consider an intervention that reduces coronary heart dis-

ease incidence by 5% at every age. A parallel coronary

heart disease lifetable is constructed for BAU and this inter-

vention where the incidence rates are reduced by 5%.

(Supplementary Table 1, available as Supplementary data

at IJE online, shows an abridged lifetable for this.) BAU

inputs to the disease lifetable include incidence rates (e.g.

from registry data) and case fatality or excess mortality

rates, for the base-year and each year into the future. Base-

year disease prevalence is inputted but is calculated for

subsequent years within the disease lifetable as a function

of annual cycle incidence and case fatality rates. As such,

prevalence provides a useful output in model calibration to

ensure that its trends into the future are consistent with a

priori expectation. For example, diabetes incidence, preva-

lence and mortality rates are rapidly changing in most

countries, and estimates of these parameters are often

poor, leading to concerns about parametrizing the BAU

model for diabetes (see later sections). If independent fore-

casts or expert expectations of future diabetes prevalence

trends exist, these can be compared with model outputs as

a form of model validation.39Disease-specific disability

rates are the disease-specific YLDs from a burden of dis-

ease study divided by the total population. The starting

number of people in this disease lifetable does not matter,

for two reasons: we are only interested in differences in

rates between BAU and intervention, to then link back to

the main lifetable; and we assume diseases are indepen-

dent, nullifying the need for actual numbers of people in

each disease state to model comorbidity. Figure 1 shows

the incidence rate inputs and mortality rate and prevalence

outputs for this example.

Proportional multistate lifetable modelling

Figure 2 shows a conceptual diagram of intervention

modelling through a PMSLT, broken down into five

modules.

Module I: multiple data sources

Epidemiological parameters for each disease can come

from a range of sources, with a likely candidate source be-

ing a burden of disease study or the GBD (especially for

low- and middle-income countries without rich national

data), with checks using a version of the DISMOD tool

that ensures incidence, prevalence, mortality, case fatality

and remission rates are coherent (these parameters are

mathematically related).40,41

Module II: intervention models

Quantifying the impact of an intervention requires careful

conceptualization and modelling in its own right. For ex-

ample, tobacco taxes require conversion to price rises,

then to purchasing changes, all on top of BAU trends in

tobacco consumption (Supplementary Figure 1, available

as Supplementary data at IJE online). A dietary counsel-

ling intervention will require modelling a cascade of tar-

get population, population reached, population

completing the programme, initial changes in diet and

then maintenance of any intervention effect. One com-

mon last component of the intervention modelling—if the

intervention changes disease incidence—is the use of po-

tential impact fractions (PIFs) that blend the risk factor

distribution shift relative to BAU with the effect size rate

ratios (RRs) to give a change in disease incidence, for a

given risk factor, i.e.

PIFitd ¼
P

kðPBAU
kit � RRkidÞ �

P
kðPInt

kit � RRkidÞP
kðPBAU

kit � RRkidÞ

where: P is the prevalence of the risk factor (e.g. tobacco

smoking) for smoker category k (e.g. current, never, and

(in our model) 20 states for each of the 20 years since quit-

ting), i indexes each sex by age (and possibly other hetero-

geneity covariates) and t indexes for time step; RR is the

incidence rate ratio by level k of the risk factor for disease

d by heterogeneity I; the superscripts ‘BAU’ and ‘Int’ are

for business-as-usual and intervention scenarios,

respectively.

If the PMSLT includes two or more risk factors affected

by an intervention, the combined PIF is:
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PIFitd�r ¼ 1�
Y

r
ð1� PIFitdÞ

where r indexes each risk factor, and �r denotes combined

over risk factors.

Modules III and IV: parallel disease lifetables and

main lifetable

A multiple-disease, multicohort PMSLT is an extension in

the following dimensions. First, more independent diseases

CHD Prevalence

CHD Mortality

CHD Incidence

50 60 70 80 90
100

110

0.00
0.01
0.02
0.03
0.04

0.00

0.02

0.04

0.06

0.0
0.1
0.2
0.3

Age

Rate

CHD Incidence

CHD Mortality

CHD Prevalence

Intervention

BAU

Reduce CHD 5%

Figure 1 Business-as-usual (BAU)and intervention (5% reduction in coronary heart disease incidence) outputs of coronary heart disease mortality

rates and morbidity rates (per person) and coronary heart disease prevalence, for the 50–54-year-old non-M�aori male cohort in 2011 over the remain-

der of their lives. CHD, coronary heart disease

II. Interven�onmodels:
Many types, e.g.:
• 1o preven�on � ∆ risk factors
� ∆ disease incidence (e.g. PIF)
- E.g. tobacco tax

• Preven�on � ∆ disease
incidence
- E.g. bowel cancer screening 

that lowers incidence rate
(removing polyps) or stage
shi�s incidence rates

• Treatment � ∆ disease CFR
- E.g. sten�ng for coronary 

artery disease
• Treatment � ∆ disease

morbidity
- E.g. reducing pain

III. Parallel disease lifetables:

Key BAU inputs by strata of sex,
age and other heterogeneity,
separately to each disease table:
- Incidence, prevalence and
CFRs
- (Health system and other
(e.g. produc�vity) disease costs)

Key interven�on inputs:
- ∆’s compared to BAU in one
or more of incidence, prevalence
and CFRs

Key
-
or m
and

IV. Main lifetable:
Mul�ple cohorts modelled over
remainder of their lives, under BAU 
and interven�on(s).

Key BAU inputs by strata of sex,
age and other heterogeneity:
- Pop’n counts in base-year
- All-cause mortality and
morbidity rates, in base-year
and beyond with trends
- (Health system and other
(e.g. produc�vity) costs)

Key interven�on inputs:
- ∆’s compared to BAU in all-
cause mortality and morbidity 
rates, by summing disease-
specific ∆’s across all disease
lifetables
- (Interven�on costs) 

I. Mul�ple data sources, e.g.:
Vitals and registry data, census data, GBD epidemiological data, survey data (e.g. risk factor
prevalence), meta-analyses for RRs, (cost databases), forecas�ng data for trends in BAU
Data processing
Data may need to be processed to ensure coherence: e.g. that epidemiological es�mates of
disease incidence, prevalence, case fatality, remission, etc, are coherent (e.g. DISMOD); (e.g.
that disease costs actually sum to total health expenditure

V. Outputs. Primary outputs: ∆ HALYs, ∆HALE (∆ net
cost). Secondary outputs: ∆’s in mortality and
morbidity rates, impacts on inequality/
heterogeneity, �ming of future ∆’s

PIFs or other
parameters to
∆ incidence,
prevalence or
CFR

Sum of disease
specific ∆s in
mortality and
morbidity rates

Figure 2 Conceptual diagram of intervention modelling with a proportional multistate lifetable model, showing five modules: I. Data sources; II.

Intervention models; III. Parallel disease lifetables; IV. Main lifetable; and V. Outputs. GBD, Global Burden of Disease; PIF, potential impact fraction;

BAU, business-as-usual; D, change; CFR, case fatality rate; HALY, health-adjusted life-year; HALE, health-adjusted life expectancy
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are added to the model. All disease-specific mortality

and morbidity rate changes are added up across diseases,

then subtracted from the all-cause mortality and

morbidity rates in the main lifetable. Second, multiple

cohorts (i.e. not just 50–54-year-old non-M�aori males as

in the examples above) are run independently through the

same model structure, with life-years and HALYs

summed up across all sex by age cohorts. The HALYs in

BAU are:

HALYsBAU ¼
X

i

X
t

�
NBAU

it � expð�mortBAU
it Þ

� ð1�morbBAU
it Þ

�

where: i indexes each sex by age (and possibly other het-

erogeneity covariates) cohort, and t indexes year (0 for

base-year); NBAU
it is the number of individuals alive at the

beginning of each annual cycle (NBAU
it¼0 is the number in

each cohort in the base-year); mortBAU
it and morbBAU

it are the

projected all-cause mortality and morbidity rates for each

cohort i by cycle t into the future.

Under intervention, the values of mortInt
it and morbInt

it

differ (presumably less), whereby:

mortInt
it ¼ mortBAU

it þ
X

d

ðmortInt
itd �mortBAU

itd Þ

and:

morbInt
it ¼ morbBAU

it þ
X

d

ðmorbInt
itd �morbBAU

itd Þ

where: d is subscript for all parallel diseases including in

the model; mortBAU
itd is the BAU cause-specific mortality

rate for cohort i at time t for disease d (that is the result of

the inputted disease-specific incidence, case fatality and

prevalence rates to each disease lifetable in module III);

mortInt
itd is the intervention scenario cause-specific mortality

rate (that is a result of an intervention effect on the cause-

specific incidence rates); morbBAU
itd is the BAU morbidity

rate (i.e. the product of BAU disease-specific prevalence

and the disability rate for having disease d); and morbInt
itd is

the intervention scenario morbidity rate [i.e. the product of

intervention disease-specific prevalence (usually less than

BAU prevalence due to lower incidence rates) and the

(same as BAU) disability rate].

Module V: outputs

Differences between BAU and the intervention scenario in

HALYs are the most commonly used output, but it is possi-

ble to output many other metrics (e.g. life-years, HALE

and life expectancy, all-cause and cause-specific disease

mortality and morbidity rates). It is feasible to extend the

PMSLT to also model health system costs, allowing for

cost-effectiveness estimates (cost inputs in parentheses in

Figure 2).

Case studies: tobacco control interventions

through a proportional multistate lifetable model

We modelled three tobacco control case studies: (i) eradi-

cation, whereby all current smokers became ex-smokers in

2011 and there was no further initiation of smoking; (ii)

10% per annum excise tax on tobacco from 2011 to 2031;

and (iii) a tobacco-free generation whereby there was not

further initiation of tobacco smoking after 2011 due to an-

nual increases in the minimum legal age for purchasing

tobacco.

We present results for the total New Zealand popula-

tion alive in 2011, and also non-M�aori males and M�aori

females, to give the reader a sense of heterogeneity and in-

tervention impacts on health inequalities. (M�aori—females

in particular—have high smoking rates and high smoking-

related disease rates.) Below we describe the aspects rele-

vant to the model structure demonstrations (Incidence rate

ratios associating tobacco to disease incidence are shown

in Supplementary Table 2, available as Supplementary

data at IJE online; further details on the New Zealand to-

bacco PMSLT are described elsewhere14,15).

Methods

Future BAU smoking prevalence

Future smoking prevalence is not explicitly incorporated

into the lifetables, but rather influences intervention im-

pact during the PIF calculations. Imagine two BAU scenar-

ios with different future smoking prevalence: 30% and

10%. An intervention that decreases smoking prevalence

by 10% will result in different future prevalence (i.e. to

27% and 9%, respectively). The three versus one percent-

age point difference in smoking prevalence will mean that

the PIF is greater (and thence greater disease incidence

reductions and greater HALYs gained) for the former com-

pared with the latter BAU scenario.

In our default tobacco model, at the juncture of mod-

ules I and II in Figure 2, is a Markov model projecting fu-

ture tobacco prevalence42—assuming that past annual net

cessation trends and annual changes (declines) in initiation

persist into the future. Thus, any interventions we model

are on top of an already declining tobacco smoking preva-

lence (shown in Supplementary Figure 2, available as

Supplementary data at IJE online), following an avoidable

(as opposed to attributable; see Introduction above)

1630 International Journal of Epidemiology, 2020, Vol. 49, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/49/5/1624/5920732 by U

niversity of M
elbourne user on 25 M

arch 2021

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa132#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa132#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa132#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa132#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa132#supplementary-data


approach that is more policy-relevant.12 To illustrate

model structure variation, we specify a scenario of zero net

cessation rates into the future (meaning tobacco prevalence

for each age cohort only falls modestly due to differential

mortality between current, ex-and never smokers, com-

pared with the steeper falls in BAU shown in

Supplementary Figure 2, due to cessation).

Time lags

In our default tobacco model, again approximating an

avoidable as opposed to attributable approach,12 we allow

for attenuation of tobacco-related harms over 20 years

since quitting, using disease-varying (and sometimes sex-

and age-varying) equations from Hoogenveen et al.43

(Supplementary Table 2, available as Supplementary data

at IJE online). This is operationalized through a 20-year-

long tunnel state for quitters in the above parallel tobacco

prevalence Markov model. As a demonstrative scenario

analysis for this paper, we also specify a no-time-lag sce-

nario where quitters immediately receive the disease inci-

dence rates of never smokers.

Analyses

All input parameters had parametric uncertainty intervals,

allowing Monte Carlo simulation (2000 iterations) to gen-

erate 95% uncertainty intervals about all of the above out-

puts. Python code used in this paper is described in more

detail in the last section of the Methods.

Case study results

Default model

Table 2 shows the BAU outputs and the incremental dif-

ferences from BAU for each of the three interventions. For

the total population alive in 2011, they are expected to

have 212 million remaining life-years of which 173 mil-

lion are healthy. With tobacco eradication, the life-years

and HALYs increase by 1.50 and 1.57 million, respec-

tively, or an increase of 0.70% and 0.91% over BAU,

respectively. Note that the HALYs increase more than

life-years, meaning there is a compression of morbidity

under tobacco eradication. The tobacco tax and tobacco-

free generation interventions gain 291 000 and 479 000

HALYs over BAU—or about 20% and one- third, respec-

tively, of all potential health gain realizable from tobacco

eradication.

Also shown in Table 2 are mortality and morbidity rate

outputs 20- and 40-years post-intervention, as selected

examples of possible outputs. There are marked reductions

in age-standardized all-cause mortality rates for M�aori

females, and lesser percentage reductions in age-

standardized morbidity rates.

An advantage of simulation modelling is the ability to

extract and examine how benefits are distributed by demo-

graphic group and time into the future. Figure 3 shows one

example—the ratio of HALYs to life-years gained with a

tobacco tax, by cohort age in 2011 for each 5-year interval

of follow-up into the future. Scanning across the figure

horizontally captures the experience of each age cohort in

2011, over the reminder of their lives. Scanning down a di-

agonal captures the experience for the same age group into

the future; we have highlighted in yellow the diagonal of

people aged 75–79 (centred on 77-years-olds) by 5-year in-

terval years into the future. The HALY gains among 75–

79-year-old M�aori females are a little less than the life-year

gains (ratios around 0.9), but for 75–79-year-old non-

M�aori males, the HALY gains are a little greater (ratios

about 1.25 to 1.5). The reasons for different patterns of

health gains are a combination of smoking rates, disease

rates and background or competing morbidity and mortal-

ity rates—a detailed analysis of which is beyond the scope

of this paper that seeks more to illustrate types of output

that can be generated.

Model structure scenarios

Here we demonstrate the impact of two model structure

variations (Figure 4). Not allowing for decreasing smoking

prevalence in BAU increases the apparent HALYs gained

by over 2-fold for each of the three intervention scenarios.

The reason here is fairly straightforward; if future expected

reductions in tobacco prevalence (for reasons other than

the intervention being modelled) are not allowed for, one

will incorrectly overestimate the health gains from tobacco

control in the future.

Not allowing for time lags is more nuanced, overesti-

mating health gains for tobacco eradication but underesti-

mating health gains for a tobacco-free generation.

Regarding the latter, in a BAU without time lags new gen-

erations of smokers are not getting as much health harm

as in our best model with time lags—because they enjoy

instantaneous return to normal health on quitting at some

age in the future. Thus, when one runs an intervention

simulation of no more initiation (a tobacco-free genera-

tion), the reversed health harm is less—so HALY gains

are less. But for the eradication scenario with no time

lags, one has an offsetting much larger health gain among

the older current smokers as they get larger than plausible

health gains on quitting. Hence the no-time-lag scenario

overestimates health gains for eradication, and underesti-

mates for a tobacco-free generation. These examples
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shown in Figure 4 demonstrate the need to understand

and specify model structure as correctly and transparently

as possible.

A Python-based framework for PMSLT
models

PMSLT models have typically been developed as Excel

spreadsheets, given the intuitively ‘spreadsheet nature’ of

lifetables and the desire to make models accessible to a va-

riety of prospective users. Whereas spreadsheet models

have the merits of accessibility and ease of use, they also

have obvious limitations. Identifying data and formula

errors can be difficult as they typically involve many

spreadsheet cells. Spreadsheet models also have less flexi-

bility for model adaptations and re-usability and are usu-

ally slower at running Monte Carlo simulation (where

each input parameter is drawn from a probability distribu-

tion reflecting its uncertainty) compared with models pro-

grammed in computing code.

To address these limitations, we have built a general

purpose PMSLT modelling toolkit within the existing

Python-based Vivarium simulation framework44—and

used it to generate the above outputs. Input data can be

extracted from existing repositories (such as the GBD), fur-

ther reducing the risk of errors introduced via manual han-

dling. Separating models and data also makes it

straightforward to re-use a single model across multiple

countries, or to extend a model to consider multiple sub-

populations within a country. Furthermore, the modular
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approach facilitates re-use at the level of individual dis-

eases, risk factors and interventions, decreasing the time re-

quired to construct new models. Finally, more efficient

implementation reduces the computational time required

to run large numbers of simulations and offers the oppor-

tunity of shifting to parallel computation on large-scale

computing facilities.

The generic Vivarium PMSLT tools for modelling pub-

lic health interventions are available from github [https://

github.com/ihmeuw/vivarium_public_health], as is the spe-

cific archive of code used in this paper [https://github.com/

population-interventions/vivarium_unimelb_tobacco_inter

vention_comparison].

Conclusion

Comparing and selecting between different combinations

of preventive interventions requires comparable estimates

of each intervention’s health and cost impacts. Simulation

modelling can provide such estimates but is under-used in

epidemiology and public health more generally. Here we

have demonstrated the application of one such method—

PMSLT modelling—to compare tobacco control

interventions.

The principal strength of PMSLT is that it allows the in-

clusion of multiple diseases (that the intervention causally

effects), without state explosion. It is well suited to preven-

tive interventions that work through changing risk factors,

and then disease incidence, but it can also be used for inter-

ventions acting through changes in case fatality and mor-

bidity. With the growing availability of comprehensive

datasets on demographic and epidemiological parameters

for all countries—and forecasts of future trends45,46—there

is great potential to quantify future health gains from pre-

ventive interventions in a comparable manner using

PMSLT.

This flexibility derives from the assumption of indepen-

dence between diseases. Exploratory modelling has shown

this assumption to have limited impact in most settings on

overall estimates, as over- and underestimates tend to can-

cel each other out.31,47 When dependencies between dis-

eases are substantial, this can be captured in PMSLT by

treating a disease as both a disease in its own right and also

a risk factor for other disease conditions. For example, dia-

betes can be modelled as both a disease and a risk factor

for stroke and coronary heart disease.

We have demonstrated how social group heterogeneity

(sex and ethnicity) can be incorporated in PMSLT models.

In current work we are extending our simulation frame-

work to enable automatic disaggregation of PMSLT by

population strata, given user-supplied inputs on sub-

population variation in disease incidence and case fatality

rates, and all-cause morbidity and mortality rates. As the

number of dimensions of heterogeneity that are of interest

increases, stratifying cohorts may become unwieldy, and

microsimulation may be a more appropriate approach.

However, although microsimulation offers the ability to

model combinations of sub-populations at extremely high

resolution, and correlated risk factors and diseases, it is

also demanding in terms of data requirements (e.g. correla-

tion of risk factors within individuals) and computation.

PMSLT offers an attractive compromise, providing the

ability to model interventions affecting multiple diseases,

and combinations of preventive interventions, across het-

erogeneous populations in a manner that is flexible and

scaleable.
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Supplementary data are available at IJE online.
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